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Problem Statement
Aim

Á We want to be able to detect fluctuations 

in the received signals via GNSS-R to 

identify sea targets such as 

Á Ships

Á Oil Slick

Á Sea ice

Problem

Á There is a very significant signal response 

from the sea clutter

Image Credit: E. Valencia, A. Camps, H. Park, N. Rodriguez-Alvarez, X. Bosch-Lluis, and I. Ramos-Perez, ñOil slicks detection using GNSS-R,ò Int. 

Geosci. Remote Sens. Symp., vol. 2, no. 1, pp. 4383ï4386, 2011.

Image Credit: A. Alonso-arroyo, S. Member, V. U. Zavorotny, and A. Camps, ñSea Ice Detection Using U . K . TDS-1 GNSS-R Data,ò vol. 55, no. 9, pp. 

4989ï5001, 2017.



Conventional Sea Clutter Modelling
Conventional sea clutter models uses the Zavorotny - Voronovich model *

Á We can subtract the expected sea clutter DDM from received DDM the using ZV model 

Á Assumption: we have the true values of sea wind speed and sea wind direction. If this 

assumption is violated, unwanted artefacts will be embedded in the DDM

Á A clean subtraction can reveal any component that are not due to sea clutter

* A. G. Voronovich and V. U. Zavorotny, ñBistatic radar equation for signals of opportunity revisited,ò IEEE Trans. Geosci. Remote Sens., vol. 56, no. 

4, pp. 1959ï1968, 2018

Image Credit: A. Di Simone, A. Iodice, D. Riccio, A. Camps, and H. Park, ñGNSS-R: A useful tool for sea target detection in near real-Time,ò RTSI 2017 

- IEEE 3rd Int. Forum Res. Technol. Soc. Ind. Conf. Proc., 2017.



Delay Doppler Map Dataset

Á DDM dataset: TDS-1 ( 3/12/2017 ) ïH18 Group 35 indices 470 - 699

Á DDMs normalisation

Á AR analysis needs to have temporal detrending applied to the DDM dataset



Sea Clutter DDMs: A slow varying process

Á The following time series of DDMs show how correlated the sea clutter components are 

to each other once we have properly normalised it.

Á First Fresnel Zone resp.: High Amplitude. Slow varying from epoch to epoch. 

Possible that signal DDM cells has temporal correlation

Á Large †resp.: Lower Amplitude and faster varying.

Á Noise resp.: Low amplitude and fast varying

Epoch 650                   Epoch 660                       Epoch 670                      Epoch 680                       Epoch 690
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Conventional: Sea Clutter Model Subtraction

Raw DDM ïRed box indicating a target entering the DDM from top right 

Modelled Sea Clutter



Conventional: Sea Clutter Model Subtraction

Raw DDM ïRed box indicating a target entering the DDM from top right 

Sea Clutter  Model Subtraction



Proposed:

Low Pass Filter 

Credit: http://e-rokodelnica.si/A003/A003_EN.html

Raw DDM ïRed box indicating a target entering the DDM from top right 

Modelled Sea Clutter using LPF using a = 0.05  



Proposed:

Low Pass Filter 

Credit: http://e-rokodelnica.si/A003/A003_EN.html

Raw DDM ïRed box indicating a target entering the DDM from top right 

Lowpass filtered using a = 0.05  



AutoRegressive (AR) Analysis: Methodology

Partial Auto-Correlation Function (PACF)

Á PACF solves the Yule-Walker equations 

to obtain the AR coefficients       for p

ranging from 0 to Lmax

Auto-Correlation Function

Å ACF is the correlation of a signal with a 

delayed copy of itself

Å Itôs a measure of similarity of  with 

delayed versions of itself

Autoregressive (AR) Model

Á Signal at epoch m can be expressed as 

a linear combination of signals at 

previous epochs m - k
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Á If the PACF order (max. length) is much shorter than the ACF order (max. length), the 

process is considered highly autoregressive.



Auto Correlation Function (ACF)
Doppler: 0 Hz , Code Delay: 0.5 chips       (A)

Doppler: 0 Hz , Code Delay: 6.0 chips      (D,E)

Doppler: 0 Hz , Code Delay: -2.0 chips       (F)



Partial Auto Correlation Function (PACF)
Doppler: 0 Hz , Code Delay: 0.5 chips    (A)

Doppler: 0 Hz , Code Delay: 6.0 chips    (D,E)

Doppler: 0 Hz , Code Delay: -2.0 chips                (F)



AutoRegressive (AR) Analysis: Max. Lag

PACF ACF



System Gain vs. Max. Lag

PACFACF

We need to have a variable filter order across the various Delay 
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