Spaceborne Carrier Phase Altimetry Using GNSS Reflected Signals At Grazing Angles Of Observation Over Open Sea Water

Institute of

Space Sciences

Estel Cardellach ¹ ², Weiqiang Li ¹ ², Antonio Rius ¹ ², Jens Wickert³, Maximilian Semmling³, Florian Zus³, Christopher Ruf⁴

¹ Institute of Space Sciences (ICE-CSIC), Barcelona, Spain
 ²Institute of Space Studies of Catalonia (IEEC), Barcelona, Spain
 ³ GeoForschungsZentrum (GFZ), Potsdam, Germany,
 ⁴ University of Michigan, U.S.A.

CyGNSS RAW DATA SET

EXAMPLES OF CyGNSS GA CaPA RETRIEVED TRACKS

EFFECTS OF TROPOSPHERIC BENDING (BENT vs STRAIGHT PROPAGATION)

CONDITIONS FOR COHERENCE

CyGNSS RAW DATA SET

EXAMPLES OF CyGNSS GA CaPA RETRIEVED TRACKS

EFFECTS OF TROPOSPHERIC BENDING (BENT vs STRAIGHT PROPAGATION)

CONDITIONS FOR COHERENCE

- GNSS-R grazing angle (GA) observation: when the elevation angle at the specular point is low, e.g. e < 30°.
- Carrier Phase Altimetry (CaPA): altimetric retrievals resulting from range measurements or range variation measurements obtained from the tracking of the phase of the carrier EM signal → it requires <u>COHERENT</u> signal/scattering.
- GNSS signals reflected off sea surface waters are <u>generally</u> <u>not-coherent</u> (diffuse scattering).
- At GA, the delays of the signals scattered at the troughs of the waves w.r.t. the ones scattered at the crests is shorter than in near-nadir geometry \rightarrow better conditions for coherence (smoother effective roughness).

• Advantages of GNSS-R GA CaPA observations:

- <u>Fine precision of the range measurements</u>: the signal noise of each coherent observation (several millisecond) is only a fraction of the EM wavelength → several cm level range precision at millisecond rates.
- Higher number of observations possible (potential for <u>high</u> <u>spatio-temporal coverage</u>).
- Simple/small/cheap GNSS-R payloads, e.g. radio occultation payloads, TDS/CyGNSS-like payloads, PRETTY...
- Disadvantages of GNSS-R GA observations:
 - Lack of coherence impairs CaPA, it reduces the final number of retrievals.
 - Atmospheric effects are larger \rightarrow accurate atmospheric corrections required.

• Empirical examples:

70% of the GNSS radio occultation (atmospheric sounding) profiles **over the Oceans** present reflected signals, a clear tone, **irrespectibely of the sea surface roughness conditions** (coef. correlation with SWH 0.04) [Cardellach et al. 2004, Aparicio et al., 2018]. Elevation angles 0°-1°.

GA CaPA was possible in a diversity of roughness conditions over open sea waters across the Mediterranean from an airborne at 3km altitude [Semmling et al. 2014]. Both RHCP and LHCP polarizations presented coherence. **Elevation angles up to 30°**.

CyGNSS RAW DATA SET

EXAMPLES OF CyGNSS GA CaPA RETRIEVED TRACKS

EFFECTS OF TROPOSPHERIC BENDING (BENT vs STRAIGHT PROPAGATION)

CONDITIONS FOR COHERENCE

- **CyGNSS raw data:** GNSS signals captured at any of the satellites' antennas, down-converted to intermediate frequency and sampled at 16.0362 MHz.
- We have analyzed all CyGNSS raw data sets available over the region of **Central America**.
- We have applied our 'software receiver' on the ground to obtain tracks of GNSS reflected signals. Coherent integration time: 50 ms.
- The tracks consist of complex waveforms at 20 Hz sampling.
- The phase of the peak-phasor is extracted (here Tc=10 ms):

Institute of Space Sciences CSIC IEEC

• Summary of processed data:

Number of acquisition sets:	24 different days, 11 periods (hurricane passes? Sep-Oct 2017 and 2018)
Number of reflected tracks at GA geometries:	63
Range of antenna gain values:	-22 to 12.4 dB
Range of elevation angles:	2º to 26º
Range of wind speed conditions (ERA-5 co-location):	1 to 11 m/s
Range of SWH conditions (ERA-5 co- location):	0.2 to 2.4 m

CyGNSS data set:

Institute of Space Sciences Constitute of Investigationes Centerican

CyGNSS RAW DATA SET

EXAMPLES OF CyGNSS GA CaPA RETRIEVED TRACKS

EFFECTS OF TROPOSPHERIC BENDING (BENT vs STRAIGHT PROPAGATION)

CONDITIONS FOR COHERENCE

GA CaPA retrievals:

-81.16º 22.40º 2018-09-15 12:29

-77.65° 23.26° 2018-09-15 12:43

- 50 msec solutions, no further smoothing
- Systematic errors partially corrected: no tide, no atmospheric load...

GA CaPA retrievals:

Institute of Space Sciences

-71.15º 12.42º 2017-09-08 18:32

-68.10° 12.89° 2017-09-08 18:44

GA CaPA retrievals:

-81.91° 21.57° 2018-10-14 23:28

Institute of

PRECISION ANALYSIS:

The precision error due to noise in the range measurements is very small $<\lambda/4$ (< 5 cm) at 50 ms integration.

However, other systematic effects such as residual ionospheric and tropospheric miscorrections, orbit and clock errors, etc, might induce larger errors.

A **coarse combined precision figure** (noise+residual systematic effects) is provided as the RMSE between the DTU18 mean sea level and GNSS-R solutions. Please note that we did not correct for all effects (e.g. tides) and only approximate models were used for ionospheric corrections:

0.15 m to 0.5 m with 50 ms coherent integration

CyGNSS RAW DATA SET

EXAMPLES OF CyGNSS GA CaPA RETRIEVED TRACKS

EFFECTS OF TROPOSPHERIC BENDING (BENT vs STRAIGHT PROPAGATION)

CONDITIONS FOR COHERENCE

- The tropospheric effects increase with incidence angle. Maximum effect at low elevation angles : ~1/sin(e).
- Moreover, at grazing angles, the ray trajectory could bent due to vertical gradients of the refractive index!
- 'Ray tracers' are numerical tools to compute the atmospheric ray path, including bending.
- Range and Doppler differences between straight-path and bending-path (ray tracer) computations in the examples we analyzed are small enough to be neglected in the OPEN LOOP tracking model → tracking receivers can use straight-line propagation models.

• However, the altimetric retrieval might present large differences if the tropospheric are corrected from straight-line

Institute of

Space Sciences

or bended models:

Straight-line atmospheric corrections

CSIC IEEC

• However, the altimetric retrieval might present large differences if the tropospheric are corrected from straight-line or bended models:

Institute of

Space Sciences

Ray tracer/bended rays atmospheric corrections

CSIC IEEC

CyGNSS RAW DATA SET

EXAMPLES OF CyGNSS GA CaPA RETRIEVED TRACKS

EFFECTS OF TROPOSPHERIC BENDING (BENT vs STRAIGHT PROPAGATION)

CONDITIONS FOR COHERENCE

Conditions for coherence:

• We **only** found **coherent signals** when:

Antenna gain:	> -15 dB
Elevantion angle:	< 25º
Wind speed (ERA-5):	< 6 m/s
SWH (ERA-5):	< 1.5 m
Mean square slope (ERA-5):	< 0.004
Steepness:	< 0.021

These are **necessary conditions**, but not sufficient (tracks fulfilling these conditions not necessary present coherence)

Conditions for coherence:

Institute of Space Sciences Constant Co

Examples of coherence and noisy measurements:

- The number of reflected tracks that fulfill the necessary 'calm' conditions are 36.
- Among them, 12 present coherence (33%).

OPEN QUESIONS: why some tracks do not present coherence under the same conditions? Why GEOHALO airborne experiment presented much relaxed coherence conditions?

- Dynamics of the Fresnel zone? (e.g. airborne vs spaceborne; within spaceborne, direction of the Fresnel ellipse w.r.t. direction of velocity)
- Direction of the roughness features w.r.t. observation azimuth?
- Ionospheric disturbances (strong scintillation)?
- Insufficiently smart processing?

Institute of Space Sciences CSIC EEC

CyGNSS RAW DATA SET

EXAMPLES OF CyGNSS GA CaPA RETRIEVED TRACKS

EFFECTS OF TROPOSPHERIC BENDING (BENT vs STRAIGHT PROPAGATION)

CONDITIONS FOR COHERENCE

Which is the potential use of these coherent reflections?

• Simulated tracks as obtained for the CyGNSS mission, assuming its HW was also designed to collect grazing angle GNSS-R tracks between 10°-20° elevation, with antenna gain values larger than -15 dB.

Institute of

- GNSS constellations: GPS, Galileo, BeiDou-3 & Glonass.
- 3 days simulation: 11, 12, 13 Oct 2018 & 1, 2, 3 Feb 2019.
- Each track is co-located with ERA-5 wind and SWH. **Only tracks that fulfill 'needed conditions'** are selected.
- Among these, **only 33%** (randomly chosen) are finally displayed.

Tracks along 'required conditions' 11-13 Oct 2018:

Institute of Space Sciences Superior de Investigaciones Centificas

33% of tracks along 'required conditions' 11-13 Oct 2018:

33% of tracks along 'required conditions' 1-3 Feb 2019:

33% of tracks along 'required conditions' 11-13 Oct 2018:

33% of tracks along 'required conditions' 1-3 Feb 2019 Global:

Institute of

- >10 agency satellites currently in orbit;
- 6 more to be launched June 2019;
- >50 commercial cubesats in orbit.
- GNSS RO missions have some advantages:
 - They work at 2 frequencies (ionospheric corrections),
 - They are a key element of operational weather forecast, plans to expand and maintain large meta-constellations of GNSS RO,
 - Firmware-only changes required!
 - Commercial companies currently deploying GNSS RO satellites.

CSIC IEEC

Discussion:

Current daily radio occultation coverage:

Spire's commercial LEOs

Daily radio occultation coverage of COSMIC-2 (Launch June):

• GA CaPA over open seas has been first tested from spaceborne platform in the range up to 25° elevation.

Institute of

- CyGNSS raw data sets analyzed across the Central America region:
 63 GNSS-R tracks found below 25° elevation.
- Sea surface GA CaPA is possible, with fine precision figures.
- GA CaPA over open sea waters seems to be only possible under certain conditions (roughness, instrument).
- However, these conditions are not sufficient. In this data set 33% of the tracks under 'required conditions' present coherence.
- WHY? Open question to be solved (future work)
- Even if these numbers are confirmed, 3-day simulations with CyGNSS like constellations show that **the resulting coverage could be useful for sub-mesoscale altimetry** over certain regions.
- Implementation on GNSS RO mission would be feasible, providing unprecedented coverage.