

RETRIEVAL OF MEAN SQUARE SLOPES FROM CYGNSS DATA

<u>Maria-Paola Clarizia¹</u>, Jennifer Reynolds¹ and Paul Hwang²

1: Deimos Space UK

2: U.S. Naval Research Laboratory

Motivation

CYGNSS Data and filtering

Algorithm

Results and performance evaluation

Conclusions and ongoing/future work

But don't forget

3

the waves!

CYGNSS is about winds....

© ELECNOR DEIMOS

More info on www.cygnss-michigan.org

GPS satellites

CYGNSS Observatories

CYGNSS Level 3 V2.1 Wind Speed (2017-2018)

2017-03-18

CYGNSS S/C

Launch: Dec. 2016

OBSERVABLES USED FOR MSS ESTIMATION

□ V 2.1 of CYGNSS Data

- Delay/Doppler Map Average (DDMA) and Leading Edge Slope (LES) observables from the L1 files
- □ Analysis developed for August-September 2017;

REFERENCE DATA

- □ Modelled MSS from NOAA WaveWatch 3 or WW3
- Baseline L2 MSS from the CYGNSS L2 product

FILTERS

- \Box Quality control flag = 0
- □ Truth MSS, and observables > 0;
- Measurements taken when the star tracker is not tracking are discarded (NST flag);
- □ Range-Corrected Gain (RCG) > 3
- □ Signals from GPS Block II-F are excluded

The CDF Matching Method*

If a model function *M* relating MSS *s* to an observable *O* can be defined as s=M(O), then CDF of the observable *O* can be written as:

 $F_O(O') = 1 - F_s(s')$

IMPLEMENTATION STEPS

1.Construct the CDF of the observable and of the MSS $F_0(O')$ and $F_s(s')$ from the training dataset; 2.For each observable value O' find its CDF value $F_0(O') = \beta$ 3.Find the MSS estimate s' for which $1-F_s(s') = \beta$

The CDFs are derived from the training dataset, and for individual bins of incidence angle and range-corrected gain (RCG)

Steps 1 to 3 are used to derive separate MSS estimates from DDMA and LES, and then these two estimates are combined into a MV estimator

Performance Results

- Good agreement between WW3 MSS and MSS estimated from CYGNSS, for the test dataset;
- Issues similar to the wind speed case can be noticed, but possibly better dependence of the CYGNSS data on MSS than the wind speed case;
- Error behavior is similar to the wind case: the RMSE is fairly constant, so the bias drives the overall error

Performance Results (2)

Monthly Averages of MSS

S

Performance Results (3)

 $MSS_{baseline} = |R_{Fresnel}(\theta)|^2 / \sigma_0(\theta)$

S

Performance Results (4)

Performance Summary

Stat	CYGNSS new algorithm vs WW3 L2	CYGNSS new algorithm vs WW3 L3 (monthly average)
Bias	0.0000	0.0000
RMSE	0.0026	0.0012
Corr. Coef.	0.86	0.95

Relationship between MSS and wind speed

- **K0913** are Katzberg's airborne measurements over TCs (2009, 2013);
- **G1318** are Gleason's spaceborne measurements over open ocean and hurricanes (2013, 2018)
- C54 are MSS from Cox and Munk '54, observed in artificial-slicked water
- The black lines are produced using the general surface wave spectrum (G-Spectrum, Hwang et al., JPO, 2017), for a spectral slope of 5, and inverse wave age of 1, 2 and 3.

Relationship between MSS and wind speed (2)

CYGNSS CDF matching

CYGNSS Baseline

- Both CYGNSS CDF matching and WW3 predict lower MSS with respect to the expectation from the model and the data
- The CYGNSS Baseline predict higher MSS instead, but this might be due to the existing bias in the baseline MSS

Conclusions

- A retrieval approach of MSS from CYGNSS is proposed using the CDF matching method as an alternative to the current baseline approach
 - The agreement with WW3 is quite good;
 - The comparison with baseline MSS has identified a possible bias in the existing baseline MSS;
 - An alternative solution could be to correct the existing *MSS*_{baseline} by applying the CDF matching to it to derive the correct MSS;

The CDF matching requires however knowledge of a CDF of MSS, so is the WW3 MSS the best choice?

- Differences have been found in the pdfs of MSS for WaveWatch 3 and for the WAM model, for example
- Should we use the "corrected" WW3 MSS?
- how do we validate L-band estimations of sea surface roughness?

- Extend the dataset for future analyses
- use new release (v 3.0) of data (coming soon!)
- Understand the best reference data to use
- Explore new retrieval algorithm
 - Regional approaches, neural networks...
- More validation analysis
 - Comparison with MSS from other models (e.g. WAM);
 - Comparison with buoy measurements;
 - Further study on the relationship between L-Band MSS and wind speed, using surface wave spectral models and real data

Thank you! maria-paola.clarizia@deimos-space.com

