Towards precise synoptic altimetry by means of GNSS-R

Fran Fabra Estel Cardellach Weiqiang Li Serni Ribó Antonio Rius IEEC

Institut d'Estudis Espacials de Catalunya

and

Manuel Martín-Neira

GNSS-R altimetry: use of GNSS signals to estimate sea surface height

Synoptic: multistatic system with several specular points

- → High spatio-temporal coverage
- → Complement monostatic Radar by monitoring mesoscale ocean signals (30-300 km evolving in days-week)

Precise: use of interferometric approach (iGNSS-R)

- → Cross-correlation of direct and reflected GNSS signals to take profit of all codes
- \rightarrow Increase of effective bandwidth and thus altimetry precision

GNSS-R altimetry: use of GNSS signals to estimate sea surface height

Synoptic: multistatic system with several specular points

- → High spatio-temporal coverage
- → Complement monostatic Radar by monitoring mesoscale ocean signals (30-300 km evolving in days-week)

Precise: use of interferometric approach (iGNSS-R)

- → Cross-correlation of direct and reflected GNSS signals to take profit of all codes
- \rightarrow Increase of effective bandwidth and thus altimetry precision

Challenge

Synoptic **and** precise: not enough with best-case results → we need **consistency** among **different signals** in a **wide elevation range**

PATHWAY

Hardware development

GOLD-RTR

GPS L1 C/A cleanreplica receiver

10 correlation channels 3 front-ends 64-lag complex waveforms (msec rate) 20 MHz (15 m)

Employed in **12** experimental campaigns (so far)

Multiple remote sensing applications

Data publicly available (gold-rtr-mining)

Nogués-Correig et al., "A GPS-reflections receiver that computes Doppler/delay maps in real time.", *IEEE Transactions on Geoscience and Remote Sensing*, **2007**.

Cardellach et al., "GNSS-R ground-based and airborne campaigns for ocean, land, ice, and snow techniques: Application to the GOLD-RTR data sets.", *Radio Science*, **2011**.

PATHWAY

Hardware development

GOLD-RTR	PIR
GPS L1 C/A clean- replica receiver	First Interferometric Receiver (L1)
10 correlation channels 3 front-ends 64-lag complex waveforms (msec rate) 20 MHz (15 m)	1 correlation channel 2 front-ends 512-lag complex wav. (msec rate) 80 MHz (3.75 m)
Employed in 12 experimental campaigns (so far) Multiple remote sensing applications	Proof of concept of iGNSS-R altimetry from a 18-m bridge over estuary waters
Data publicly available (gold-rtr-mining)	

Rius et al., "Altimetry with GNSS-R interferometry: first proof of concept experiment.", GPS Solutions, 2012.

PATHWAY

Hardware development

Cardellach et al., "Consolidating the Precision of Interferometric GNSS-R Ocean Altimetry Using Airborne Experimental Data.", IEEE Transactions on Geoscience and Remote Sensing, **2014**.

Hardware development

Ribó et al., "A Software-Defined GNSS Reflectometry Recording Receiver with Wide-Bandwidth, Multi-Band Capability and Digital Beam-Forming.", *Remote Sensing*, **2017**.

SPIR CAMPAIGN

Same scenario as in PIRA campaign (onboard Aalto's Skyvan at 3 km altitude)

>2 hours of data collected (3 TB)

Integration time: 10 msec coherent and **10 sec** incoherent

For each power waveform, its corresponding **model** is generated

IEEE GNSS+R19. Benevento, Italy. 20-22 May, 2019

To point out

(1) Good agreement with model and clear differences between systems and frequency bands (different codes)

To point out

(1) Good agreement with model and clear differences between systems and frequency bands (different codes)

(2) Relevant impact of changes in aircraft velocity (given a fixed integration time)

To point out

(1) Good agreement with model and clear differences between systems and frequency bands (different codes)

(2) Relevant impact of changes in aircraft velocity (given a fixed integration time)

(3) Cases with clear inconsistencies → crosstalk from other GNSS signals

To point out

(1) Good agreement with model and clear differences between systems and frequency bands (different codes)

(2) Relevant impact of changes in aircraft velocity (given a fixed integration time)

(3) Cases with clear inconsistencies → crosstalk from other GNSS signals

To point out

(1) Good agreement with model and clear differences between systems and frequency bands (different codes)

(2) Relevant impact of changes in aircraft velocity (given a fixed integration time)

(3) Cases with clear inconsistencies → crosstalk from other GNSS signals

To point out

(1) Good agreement with model and clear differences between systems and frequency bands (different codes)

(2) Relevant impact of changes in aircraft velocity (given a fixed integration time)

(3) Cases with clear inconsistencies → crosstalk from other GNSS signals

→ Segment #6 from Galileo PRN19 removed from analysis due to (3)

Computed with respect to ellipsoid WGS84:

$$SSH_{data} = (\rho_{model}^{WGS84} - \overline{\rho_{data}})/2sin(elevation)$$

Sea surface height retrieved (SSH_{data})

The results follow the height gradient and are at the same height level as the **ground truth**, both being above **Finnish N2000**

The evolution of σ_{SSH} depends on three main factors:

- **SNR/elevation** \rightarrow general trend
- **Sensitivity** \rightarrow L5 has worse results
- **Effective integration** \rightarrow segments with higher velocity perform better

Good agreement with precision models*

Galileo not yet operational (lower SNR)

*Li et al., "Revisiting the GNSS-R Waveform Statistics and Its Impact on Altimetric Retrievals", IEEE Transactions on Geoscience and Remote Sensing, **2018**.

The results follow the height gradient and are at the same height level as the **ground truth**, both being above **Finnish N2000**

Unbiased overall result (black dashed)

Maximum separation between mean values of 26 cm \rightarrow similar to the σ of the best case (23 cm for GPS PRN01 at L1)

Still some detailed refinement could be done (e.g. EM bias)

Clear impact of the waveform model

The results follow the height gradient and are at the same height level as the **ground truth**, both being above **Finnish N2000**

Unbiased overall result (black dashed)

Maximum separation between mean values of 26 cm \rightarrow similar to the σ of the best case (23 cm for GPS PRN01 at L1)

Still some detailed refinement could be done (e.g. EM bias)

Clear impact of the waveform model

Sea surface height retrieved (SSH_{data})

The results follow the height gradient and are at the same height level as the **ground truth**, both being above **Finnish N2000**

Linear fits of $\mathsf{SSH}_{\mathsf{data}}$ tracks projected over the surface

Contour lines of Finnish N2000 height system plus mean value of in-situ sea level estimation (mean sea level + measurements from buoys)

Mean square difference of crossing points of 19 cm

First dataset that permits to evaluate multiple aspects of the **accuracy** of **iGNSS-R altimetry**:

→ Comparison with reference surface information (absolute ground truth): **unbiased** overall $\sigma_{\Delta SSH}$ of **40 cm** (ranging from **9 to 69 cm**) for **10 sec** → Cross-comparison between data tracks from different GNSS transmitters (GPS and Galileo), frequency bands (L1 and L5) and geometries (from 28 to 83 deg of elevation): **discrepancies** in **mean values** between **1 and 26 cm**

Consistency shown by the results represents a **key aspect** towards the assessment of the iGNSS-R concept for a **spaceborne** mission:

 \rightarrow Spatial separation of the specular points would allow monitorization of **mesoscale features** over the ocean

In spite of applying corrections from a comprehensive waveform model, **instrumental offset** needs to be estimated and there are still some **residual** effects:

- \rightarrow More effort is required to properly model all systematic effects
- → Spaceborne mission: calibration and validation measurements over specific sites would be highly recommended

Thank you for your attention

Contents from: Fabra et al., "Is accurate synoptic altimetry achievable by means of interferometric GNSS-R?", *Remote Sensing*, **2019**.