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Problem Statement
Aim

=  \We want to be able to detect fluctuations
in the received signals via GNSS-R to

identify sea targets such as f
= Ships
= Qil Slick
= Seaice s S
catm]
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= There is a very significant signal response qo
from the sea clutter )
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Image Credit: E. Valencia, A. Camps, H. Park, N. Rodriguez-Alvarez, X. Bosch-Lluis, and I. Ramos-Perez, “Oil slicks detection using GNSS-R,” Int.
Geosci. Remote Sens. Symp., vol. 2, no. 1, pp. 4383-4386, 2011.

Image Credit: A. Alonso-arroyo, S. Member, V. U. Zavorotny, and A. Camps, “Sea Ice Detection Using U . K. TDS-1 GNSS-R Data,” vol. 55, no. 9, pp.
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Conventional Sea Clutter Modelling

Conventional sea clutter models uses the Zavorotny - Voronovich model *
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= We can subtract the expected sea clutter DDM from received DDM the using ZV model

=  Assumption: we have the true values of sea wind speed and sea wind direction. If this
assumption is violated, unwanted artefacts will be embedded in the DDM

= Aclean subtraction can reveal any component that are not due to sea clutter
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* A. G. Voronovich and V. U. Zavorotny, “Bistatic radar equation for signals of opportunity revisited,” IEEE Trans. Geosci. Remote Sens., vol. 56, no.
4, pp. 1959-1968, 2018
Image Credit: A. Di Simone, A. lodice, D. Riccio, A. Camps, and H. Park, “GNSS-R: A useful tool for sea target detection in near real-Time,” RTSI 2017

- |IEEE 3rd Int. Forum Res. Technol. Soc. Ind. Conf. Proc., 2017.
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Delay Doppler Map Dataset

= DDM dataset: TDS-1 ( 3/12/2017 ) — H18 Group 35 indices 470 - 699
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= DDMSs normalisation a ; [n] =
T ¥

= AR analysis needs to have temporal detrending applied to the DDM dataset
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Code Delay (Chips)

Sea Clutter DDMs: A slow varying process

= The following time series of DDMs show how correlated the sea clutter components are
to each other once we have properly normalised it.

= First Fresnel Zone resp.: High Amplitude. Slow varying from epoch to epoch.
Possible that signal DDM cells has temporal correlation
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Sea Clutter DDMs: A slow varying process

= The following time series of DDMs show how correlated the sea clutter components are
to each other once we have properly normalised it.

= First Fresnel Zone resp.: High Amplitude. Slow varying from epoch to epoch.
Possible that signal DDM cells has temporal correlation

= Large 7 resp.: Lower Amplitude and faster varying.

= Noise resp..: Low amplitude and fast varying.
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Code Delay (Chips)

Sea Clutter DDMs: A slow varying process

= The following time series of DDMs show how correlated the sea clutter components are
to each other once we have properly normalised it.

= First Fresnel Zone resp.: High Amplitude. Slow varying from epoch to epoch.
Possible that signal DDM cells has temporal correlation

= Large 7 resp.: Lower Amplitude and faster varying.
= Noise resp.: Low amplitude and fast varying
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Conventional: Sea Clutter Model Subtraction
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Conventional: Sea Clutter Model Subtraction
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Proposed: \
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Modelled Sea Clutter using LPF using a = 0.05
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Credit: http://e-rokodelnica.si/AO03/A003_EN.html
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AutoRegressive (AR) Analysis: Methodology

Autoregressive (AR) Model

Partial Auto-Correlation Function (PACF)

= PACF solves the Yule-Walker equations

Signal at epoch m can be expressed as
a linear combination of signals at
previous epochs m - k

p
Ym = Z CrYm—k
k=1

to obtain the AR coefficients ¥» for p
ranging from O to L.,
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Auto-Correlation Function

ACF is the correlation of a signal with a
delayed copy of itself

It's a measure of similarity of y,,, with
delayed versions of itself

N
*
rp = z ViYk+p
k=0

If the PACF order (max. length) is much shorter than the ACF order (max. length), the
process is considered highly autoregressive.
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Auto Correlation Function (ACF)

Sample Autocorrelation

Sample Autocorrelation
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Partial Auto Correlation Function (PACF)

Sample Partial Autocorrelation

Sample Partial Autocorrelation

Doppler: 0 Hz , Code Delay: 0.5 chips (A)
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Delay [chips]

AutoRegressive (AR) Analysis: Max. Lag
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System Gain vs. Max. Lag
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We need to have a variable filter order across the various Delay
and Doppler bin for ‘matched filtering’
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Whitening DDM using Adaptive Filters

M d [n] +/\ e[
y[n] = z wpz 'd [n — K '_z -
k=1
) ‘, /
W = [wy,ws, ... wyy Adapive 5[]
Delay Filter

= Equations for updating W comes from
solving the Yule-Walker equations via /[
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LPF vs. Adaptive Filtering:
Improved Sea Clutter Suppression
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LPF vs. Adaptive Filtering:
Improved Sea Clutter Model

Sea Clutter modelled Sea Clutter Modelled Sea Clutter Modelled Raw DDM
from LPF from Adaptive Filter from ZV LS fit
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Conclusion

Method 1: Stationary Low Pass Filter, Method 2: Adaptive Filter

- We have shown empirical evidence from TDS-1 dataset that both methods work.

- We have shown that the adaptive filter is able to autonomously adjust its filter
coefficients to minimise temporal correlation and be effective to suppress sea clutter

- Two sea clutter suppression methods employed in this paper are blind methods, hence
the estimation or a priori knowledge of wind speed and wind direction is not required.

- No application of arbitrary morphological filters is needed for target detection

- The low computational effort for adaptive filter permits on-board processing. Can also
be implemented using FPGAs.

Applications

- Enhanced Sensitivity to Target Detection
- Improved Sea State Estimation

- Findings useful for derivation of on-board DDM Compression for downlinking to the
ground.
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