Effects of specular point inaccuracies on ocean DDM shape

Giuseppe Grieco¹ Ad Stoffelen ¹ Marcos Portabella ² 20th May 2019

¹Koninklijk Nederlands Meteorologisch Instituut (KNMI)

²Barcelona Expert Center (ICS-CSIC)

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

- Motivation
- Dataset & methodology
- Results
- Preliminary conclusions

- Δf_{SP} are correlated with DDM distortions in TDS-1 [1]
- Is that true also for CYGNSS?
- What is the rationale of such shape asymmetries?
- What is their impact on DDM observables? (See my poster)
- And on wind speed retrievals? (Future work)

[1] G. Grieco, et al., "Quality control of delay-doppler maps for stareprocessing. IEEE Transactions on Geoscience and Remote Sensing, 57(5):2990-3000, 2019"

- Period: 1st April 2017 30th June 2017
- Collocation with ASCAT-A/B and OSCAT
- Collocation criteria: $\Delta t \leq$ 20 min, $\Delta x \leq$ 25 km
- QC [1]; QC^{CY}; QC^{SCAT}; θ ≤ 40^o
- N≈5e6 (20%)

Meteorologisch Instituut Infrastructuur en Waterstaa

- two 60 sec tracks of raw CYGNSS data:
 - Harvey (25 August 2017) $|\Delta f_{SP}| \approx 150$ Hz
 - Irma (8 September 2017) $|\Delta f_{SP}| \approx 15$ Hz
- $\Delta f_{SP} = \hat{f}_{SP} f_{SP}$
- \hat{f}_{SP} estimated onboard (Quasi-Spherical approximation)
- *f_{SP}* estimated a-posteriori (geoid)

What am I talking about?

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

GNSS+R 2019, Benevento 5 / 22

G. Grieco

Implication for wind speed retrievals

Figure 1: Red: free or ambiguity line (horse-shoe). Black: position of HS effective area bins

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaa

- Mis-aligment between HS and effective area
 ⇒ mis-calibration of HS
- Multi-look approaches can be affected by such distortions [2]

[2] J. Tye, P. Jales, M. Unwin, and C. Underwood. The first application of stare processing to retrievemean square slope using the sgr-resi gnss-rexperiment on tds-1.

Synoptic view of distortions

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

Figure 2: TDS-1 [1]

Figure 3: CYGNSS

Geographycal distribution of Δf_{SP}

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

Figure 4: TDS-1

Figure 5: CYGNSS

Geographycal distribution of $\Delta \tau$

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

Figure 6: TDS-1

Figure 7: CYGNSS

Trend with time

Figure 8: CYGNSS

G. Grieco

GNSS+R 2019, Benevento 10 / 22

Koninklijk Nederlands Meteorologisch Instituut terie van Infrastructuur en Waterstaat

• corr($\Delta f_{SP}, \Delta \tau$) is high

- Geo distributions of Δf_{SP} and Δau are consistent
- TDS-1 and CYGNSS have similar features (SGR-ReSI in common)
- Orbital characteristics (altitude, inclination) seem to modulate the distortions
- Δf_{SP} seems to be highly predictable (correctable?)

Rationale of the distortions: demonstration

$$Y(\tau, \Delta f) = \int_0^T s(t' + \tau) a(t') \exp[-i2\pi (f_{IF} + f_{SP} + \Delta f)t'] dt'$$
[3]

- Re-compression of raw IF echo:
 - by means of a raw IF processor (by Scott Gleason)
 - $\Delta f_{SP} \in [-250, 250]$ Hz
 - evaluation of relative shift of WFs @ $\pm 1~\text{kHz}$

Harvey's track

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

G. Grieco

GNSS+R 2019, Benevento 13 / 22

Invariance of correlation integral with Δf

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

 $\times 10^{-17}$ -2.003.0 -1.752.5 +-1.502.0 -1.5 - $\tau (\tau_C)$ -1.001.0 --0.750.5 - 0.50 0.0 $\hat{f}_{SP} = 1284$ Hz fsp=1429 Hz -0.25-0.5PRN=28 Harvey L 0.00 -1.0-22 -1 ó Δf (kHz)

Figure 9: $\Delta f_{SP} = -250 \text{ Hz}$

Figure 10: $\Delta f_{SP} = 250 \text{ Hz}$

- The higher $|\Delta f_{SP}|$ the higher $\Delta \tau$ (demonstrated)
- The invariance of correlation integral happens for $\Delta f_{SP} = \Delta f$

How can we get rid of distortions? f_{SP} forecast

Koninkliik Nederlands Meteorologisch Instituut van Infrastructuur en Waterstaat

- Δf_{SP} seems to be predictable
- Uploading of f_{SP} . Is it feasible?

Koninkliik Nederlands Meteorologisch Instituut inisterie van Infrastructuur en Waterstaat

- $\Delta f = \frac{\delta f}{n}, n \in \mathbb{N}$
- If n = 10, $\Delta f = 50$ Hz $\Rightarrow |\Delta f_{SP}|_{MAX} = 25$ Hz
- Data burden to download increases by n times

Oversampling

Figure 11: $\Delta f = 50$ Hz. Red: Regular; Green: optimal choice

G. Grieco

GNSS+R 2019, Benevento 18 / 22

Koninklijk Nederlands Meteorologisch Instituut terie van Infrastructuur en Waterstaat

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

Figure 12: Regular

Figure 13: Optimal choice

- CYGNSS and TDS-1 suffer from same kind of distortions
- Rationale of distortions is demonstrated
- How do such distortions impact DDM observables? (look at my poster)
- How do they impact wind speed retrievals (routine and multi-look)? (future work)
- Risk of modulation of geophysical signals (future work)

G. Grieco, A. Stoffelen, M. Portabella, M. B. Rivas, W. Lin, and F. Fabra.

Quality control of delay-doppler maps for stare processing.

IEEE Transactions on Geoscience and Remote Sensing, 57(5):2990–3000, 2019.

J. Tye, P. Jales, M. Unwin, and C. Underwood. The first application of stare processing to retrieve mean square slope using the sgr-resi gnss-r experiment on tds-1.

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(10):4669–4677, Oct 2016.

V. U. Zavorotny and A. G. Voronovich.
 Scattering of gps signals from the ocean with wind remote sensing application.

IEEE Transactions on Geoscience and Remote Sensing, 38(2):951–964, Mar 2000.