

SigNals Of Opportunity P-band Investigation (SNOOPI): In-Space Validation of Reflectometry from 240-380 MHz

James L. Garrison^{1*}, Jeffrey R. Piepmeier², Rashmi Shah³, David A. Spencer¹, Roger Banting², Cynthia M. Firman², Manuel Vega², Kameron Larsen³, and Rajat Bindlish²

Specialist Meeting on Reflectometry using GNSS and other Signals of Opportunity (IEEE GNSS+R 2019) Benevento, Italy, 20-22 May, 2019

(1)Purdue University, West Lafayette, IN, USA

⁽²⁾NASA Goddard Space Flight Center, Greenbelt, MD, USA

⁽³⁾ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

^{*}Presenting/Contact author: jgarriso@ecn.purdue.edu

Outline

- Motivation: P-band Signals of Opportunity (SoOp)
- SNOOPI Mission description
- Instrument Heritage
- Mission Design
- Project Organization
- Conclusion

Motivation: Root-Zone Soil Moisture

- Water content in 0-1 m of soil
- Depth of absorption by plants
- L-band penetration ~5 cm
- L4 RZSM data products from assimilation

Motivation: Root-Zone Soil Moisture

Motivation: Snow Water Equivalent SNOPI

• SWE estimates from multi-frequency microwave

Multi-Dataset Mean SWE Mean SWE / Spread 18 16 2/1 14 5/4 12 1/1 10 4/5 1/2 Mudryk et al., 2015

• Model spreads of -50% to 250%, - common in mid-latitude regions

Motivation: Snow Water Equivalent SNOOPI

SWE retrieval from SoOp phase

Long (~1m) P-band wavelength – increase phase wrapping interval

Problems in Sensing <500 MHz

12-m Large Deployable Reflector (LDR)

435 MHz Operations prohibited over N. America and Europe due to Space Objects Tracking Radar (SOTR) [ESA SP-132, 2010]

Microwave Observatory of Subcanopy and Subsurface (MOSS)

Concept: 30-m deployable antenna (435/137 MHz).

[Moghaddam, et al. TGARS V 45, N 8, 2007, DOI:10.1109/TGRS.2007.898236]

P-band SoOp Demonstrations

• Signals of Opportunity Airborne Demonstrator (IIP-13)

Strong Response over water

Resolution approximately First Fresnel zone

Possible RFI?

P-band SoOp Demonstrations

Snow observations (JPL RTD)

[Shah, et al., 10.1109/LGRS.2016.2636664]

Presentation 12:30 Weds

SNOOPI Mission Description

- 2018 InVEST Selection
- Objective In Space Validation of the SoOp technique in P-band
- Necessity of Space validation:
 - 1. Demonstrate sufficient *signal coherence* at orbital altitudes and speeds to make phase measurement
 - 2. Quantify *RFI from space* (broad field of view, global distribution of measurements)
 - 3. Model prediction and instrument tracking validated for orbital delay and Doppler.

SNOOPI Instrument Heritage

- Low Noise Front End (LNFR): NASA GSFC
 - Cubesat form factor (90 x 96 mm) derived from IIP13 experience
 - 4 channels, 80 dB available gain, internal calibration paths

Prototype during population

SNOOPI Instrument Heritage

- Digital Back End (DBE): NASA JPL
 - Based on Cion GNSS receiver for Tyvak / CICERO (TRL-8)
 - Changes:
 - Off-the-Shelf Rad-tolerant high-rel CSP computer (TRL 8)
 - P-band capability
 - Leverag existing projects (SunRISE and GNSSPro)

Notional rendition of SNOOPI in orbit.

- Link budget Assumptions:
 - 10 ms integration, 1 sec incoherent avg.
 - Receiver in 410 km orbit.
 - Soil moisture requirement: 0.03 m^3/m^3
 - Receiver noise figure based on SoOp-AD

Center Freq.	240-270 MHz	360-380 MHz
Channel BW	25 kHz	5 MHz
EIRP	27 dBW	37 dBW
Orbit	GEO	GEO
# Channels Available	~10	4

Post-correlation SNR

0 deg50 deg70 deg.

[4 soil types from $\sqrt{5}$ 15 Peplinski, 1995 model]

GNSS+R, Benevento, Italy, 20-22 May 2019

SMC Error in Single Observation

0 deg50 deg70 deg.

[4 soil types from Peplinski, 1995 model]

GNSS+R, Benevento, Italy, 20-22 May 2019

• SMC Error: 1 sec avg. over all Channels

0 deg50 deg70 deg.

[4 soil types from Peplinski, 1995 mo

GNSS+R

GNSS+R, Benevento, Italy, 20-22 May 2019

SNOPI specular offset

• SMC Error: Avg. over all Channel – 0.25 Chip specular offset

0 deg50 deg70 deg.

[4 soil types from Peplinski, 1995 model]

SNOOPI Project Management

SNOOPI Project Management

 Project Initiation 	01/19
• SRR	06/19
 Bus development work start 	06/19
• PDR	09/19
• CDR	03/20
• SIR	11/20
• FRR	03/21
 Deliver to Launch site 	06/21
• Launch	09/21
 Commissioning (2 Mo.) 	12/21
 Data Collection & Processing 	09/22

Summary

- All hardware is high-TRL components
 - Digital Back End (DBE) Cion heritage
 - Low Noise Front End (LNFE) Miniaturized SoOp-AD.
 (IIP-13) instrument
 - Antennas COTS
- System (or "technique") will be validated in this mission.
- Success criteria are achievable technology validation based, not science measurements.

Acknowledgement

This work was supported by NASA Grant 80NSSC18K1524, "Signals of Opportunity P-band Investigation (SNOOPI)"

BACKUP

SigNals of Opportunity: P-band Investigation (SNoOPI)

PI: James L. Garrison, Purdue University

Object ive

SNoOPI will demonstrate measurement of the reflection coefficient and phase of land surface reflections from P-band (240-380 MHz) communication satellite Signals of Opportunity

P-band Signals of Opportunity measurements will enable the spaceborne remote sensing of Root Zone Soil Moisture (RZSM) and Snow Water Equivalent (SWE) - priority variables in 2017 ESAS Working requirements:

Reflection coefficient precision: 0.07 (1-sigma)
Reflection phase error: 10 deg. (1-sigma)

SNOOP conceptual design: 1X6U CubeSat bus provides separation between pairs of zenith and nadir antennas, at 255 and 370 MHz.

A digital back end (DBE) cross-correlates direct and reflected signals from geostationary communication satellites A calibrated Low-Noise Front End (LNFE) uses noise loads for estimation of reflection coefficient magnitude.

Approach:

Pairs of antennas receive signals along two ray paths: direct from the transmitter and reflected from the Earth's surface. Cross-correlating the signals from a pair of antennas can produce the reflection coefficient and reflected signal phase.

Reflection coefficient retrieval will be validated using a forward electromagnetic model and in-situ data at SMAP Cal/Val sites.

Phase retrieval will be validated by comparing variance to a known error model, and measuring differential phase delay due to the ionosphere.

COI S: Jeffrey Piepmeier, Manuel Vega, GSFC,
Rashmi Shah, JPL, David Spencer, Purdue University

Key Milestones

 Project Initiation 	10/18
 SRR/PDR: System requirements 	02/19
 Spacecraft Bus Contract Award 	04/19
 Spacecraft Bus CDR 	08/19
 Instrument CDR/EM Fabrication 	10/19
 Spacecraft Bus Fabrication 	03/20
 Instrument FM 	03/20
 Delivery to Observatory 	06/20
• FRR	09/20
 Launch (Earliest Opportunity) 	10/20
 On-orbit commissioning 	12/20
 Data collection and Processing 	06/21
• Data reduction	09/21
$IRL_{in} = 5$	

Earth Science Technology Office

GNSS+R

SNOOPI Mission

SNOOPI Mission

SNOOPI Mission Description

GNSS+R

SNOOPI Mission

