

May 20: 16:00~16:20 PM GNSS+R 2019, Benevento, Italy

Electromagnetic Scattering Models for GNSS-R Land Applications Including Effects of Multiple Elevations in Random Rough Surfaces

Leung Tsang¹, Jiyue Zhu¹, Haokui Xu¹, Yanlei Du¹, Ruoxing Gao¹ and Seung-Bum Kim²

¹Radiation Laboratory, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, 48109-2122 MI USA
²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA

GNSS-R physical problem

• Land surface with multiple elevations

Common models

- Coherent model
- Incoherent model

Two recent models by our Group

- Numerical Kirchhoff Simulator (KA, 2cm by 2cm patch)
- Patch model with Numerical Solutions of Maxwell equations in 3D (NMM3D) (30m by 30m patch)

GNSS-R geometry

□ Specular point (0,0)

□ Calculate received power ratio Pr/Pt

Area: 10km by 10km

Single elevation (usual rough surface problem)

Electromagnetics: rough surface specular scattering with multiple elevations

Multiple elevations: digital elevation model (DEM), e.g. 30m by 30m

Common Models: Coherent and Incoherent Model, large differences

"Coherent" model, assume single elevation :

l: Correlation length

• Up to 35 dB differences

\Box Height function f(x, y)

$$f(x,y) = f_r(x,y) + f_{DEM}(x,y)$$

 $f_r(x, y)$ = microwave centimeter roughness f_{DEM} =elevations, tens of meters

Multiple elevations cause phase variations (influences on coherent waves)

Consider both coherent fields and incoherent fields

Kirchhoff Numerical Simulator (KA simulator)

$$\bar{E}_{s}(\bar{r}) = \frac{ik}{4\pi} \sqrt{\frac{P_{t}\eta_{0}}{2\pi}} \int \int dxdy \frac{e^{ik(R_{t}+R_{r})}}{R_{t}R_{r}} (\bar{\bar{I}}-\hat{k}_{s}\hat{k}_{s}) \cdot \bar{F}(\alpha,\beta)$$

 $\Box e^{ik(R_t+R_r)}$: phase variations of spherical waves and multiple elevations

□
$$\int \int dx dy = Area = 10km \times 10km$$

account for phase variations
patch: $\Delta x \Delta y = 2cm \times 2cm$:
 $N = \left(\frac{10^4}{0.02}\right) \times \left(\frac{10^4}{0.02}\right) = 2.5 \times 10^{11}$ patches
□ Parallel implementation: 40 hours (20 cores)
□ Brute force: keep track of phase of coherent

W. Gu, H. Xu and L. Tsang, "A numerical Kirchhoff simulator for GNSS land ₇ applications," Progress in electromagnetics research, vol. 164, pp119-133, 2019.

wave

D Phase: every 2cmX2cm patch **B** Blue and yellow alternate phase by π

> Single elevation: Fresnel zones exhibited

Multiple elevations (DEM): Fresnel zones disappear

KA simulator: contributions by area

- Single elevation: power from first Fresnel zone
- □ Multiple elevations: first Fresnel zone, only 5% of power

KA simulator: multiple elevations (90000 elevations)

Multiple elevations in Georgia 31°49′50″N, 83°49′50″W

DEM resolution 30m by 30m

Recent Patch Model: Motivations

	KA simulator	Patch model
Patch size	2cm by 2cm	30m by 30m
Computation requirements	40 hours (20 cores)	0.6 seconds (1 core)
Accuracy	Kirchhoff approximation	Numerical solutions of Maxwell Equations LUT (Accurate)
Surface type	Only Gaussian	Gaussian and exponential

Patch Model: 30m by 30m patches

- □ A land surface with multiple elevations
- Divided into physical areas based on surface properties, e.g. bare soil, grass, forests
- Each physical area is discretized into patches with size of 30m by 30m

Formulation: Correlation Formula

Total scattered field = sum of scattered fields of N physical areas

$$\overline{E}_s = \sum_{n=1}^{N} \overline{E}_n^s$$
, \overline{E}_n^s scattered field of nth area

Absolute value squared to get scattered power

Correlation formula

$$\left\langle \left| \overline{E}_{s} \right|^{2} \right\rangle = \sum_{n=1}^{N} \left\langle \left| \overline{E}_{n}^{s} \right|^{2} \right\rangle + \sum_{n=1}^{N} \sum_{m=n+1}^{N} 2 \operatorname{Re}\left(\left\langle \overline{E}_{n}^{s} \right\rangle \left\langle \overline{E}_{m}^{s*} \right\rangle \right)$$

 $\Box \langle |\overline{E}_n^s|^2 \rangle$: power of *n*th physical area= coherent power + incoherent power

 $\Box \langle \overline{E}_n^s \rangle \langle \overline{E}_m^{s*} \rangle$: correlations of different physical areas. Only include correlations of coherent fields from different physical areas

Equivalent formula: Coherent + Incoherent

Total scattered power = coherent contributions + incoherent contributions

Coherent & incoherent formula

$$\left\langle \left| \overline{E}_{s} \right|^{2} \right\rangle = \left| \left\langle \overline{E}_{s} \right\rangle \right|^{2} + \sum_{n=1}^{N} \left\langle \left| \overline{E}_{n}^{s} - \left\langle \overline{E}_{n}^{s} \right\rangle \right|^{2} \right\rangle$$

□ Net coherent field $\langle \overline{E}_{S} \rangle$: complex sum of coherent fields from N areas $\langle \overline{E}_{S} \rangle = \sum_{n=1}^{N} \langle \overline{E}_{n}^{S} \rangle$, $\langle \overline{E}_{n}^{S} \rangle$ coherent field of nth area □ Incoherent contributions: sum of incoherent intensities from N areas

incoherent power =
$$\sum_{n=1}^{N} \langle |\bar{E}_{n}^{s} - \langle \bar{E}_{n}^{s} \rangle |^{2} \rangle$$

Equivalent to correlation formula

NMM3D (Maxwell Equations) implementation: calculate coherent and incoherent field of each area

- $\Box \langle \overline{K}(\hat{k}_i, \hat{k}_s) \rangle$: coherent field of each patch (30m by 30m)
- $\Box |(\hat{k}_i, \hat{k}_s) \langle \overline{K}(\hat{k}_i, \hat{k}_s) \rangle|^2 : \text{Incoherent Intensity of each patch}$
- □ NMM3D: compute both, Look up table (LUT)
 - 1. Rough surfaces
 - 2. Vegetation/forests
- Coherent field of *n*th area: coherent addtion

$$\left\langle \overline{E}_{n}^{s}\left(\overline{r}\right)\right\rangle = \sqrt{\frac{P_{t}\eta}{2\pi}} \iint_{nth \text{ area}} \frac{dxdy}{L_{x}L_{y}} \frac{\operatorname{sinc}\left(k_{dx}L_{x}/2\right)\operatorname{sinc}\left(k_{dy}L_{y}/2\right)}{R_{t}R_{r}} \exp\left(ik\left(R_{r}+R_{t}\right)\right)\left\langle \overline{K}\left(\hat{k}_{i},\hat{k}_{s}\right)\right\rangle$$

- $\succ \exp(ik(R_r + R_t))$: phase change of spherical wave and elevation change
- ▶ $\operatorname{sinc}(\frac{k_{dx}L_x}{2})\operatorname{sinc}(\frac{k_{dy}L_y}{2})$: peak in specular direction of coherent field
- \succ L_x and L_y : patch size, 30m by 30m

Incoherent : incoherent addition

$$\left\langle \left| \overline{E}_{n}^{s}\left(\overline{r}\right) - \left\langle \overline{E}_{n}^{s}\left(\overline{r}\right) \right\rangle \right|^{2} \right\rangle = \frac{P_{t}\eta}{2\pi} \iint_{nth \text{ area}} \frac{dxdy}{L_{x}L_{y}} \left(\frac{1}{R_{t}R_{r}} \right)^{2} \left\langle \left| \overline{K}\left(\hat{k}_{i},\hat{k}_{s}\right) - \left\langle \overline{K}\left(\hat{k}_{i},\hat{k}_{s}\right) \right\rangle \right|^{2} \right\rangle$$

Patch Model: single physical area, multiple elevations (90000 elevations)

Patch model and KA agree for small rms heights rms heights 6cm: 5dB differences between NMM3D and Kirchhoff Exponential factor $e^{-4k^2h^2(\cos\theta)^2}$ in Kirchhoff not correct for large rms heights in DeSanto (1974) NMM3D agrees with DeSanto.

Multiple elevations in Georgia 31°49′50″N, 83°49′50″W

DEM resolution 30m by 30m

J.A. DeSanto and O. Shisha, "Numerical solution of a singular integral equation in random rough surface scattering theory." *Journal of Computational Physics*, vol. 15, no. 2, pp.286-292, 1974.

Patch Model: multiple physical areas, single elevation

Correlation formula

$$\left\langle \left| \overline{E}_{s} \right|^{2} \right\rangle = \sum_{n=1}^{N} \left\langle \left| \overline{E}_{n}^{s} \right|^{2} \right\rangle + \sum_{n=1}^{N} \sum_{m=n+1}^{N} 2 \operatorname{Re}\left(\left\langle \overline{E}_{n}^{s} \right\rangle \left\langle \overline{E}_{m}^{s^{*}} \right\rangle \right)$$

□ Strong correlations of coherent fields

Patch	Power each area	Correlation	Correlation Value	$P_r/P_t \mathrm{dB}$
Bare soil	4.302×10^{-14}	Bare soil & Grass	2.016×10^{-14}	-
Grass	2.851×10^{-15}	Bare soil & Forest2	-6.521×10^{-15}	-
Forest2	2.984×10^{-16}	Grass & Forest2	-1.798×10^{-15}	-
Total	4.621×10^{-14}	Total	1.184×10^{-14}	-172. 45dB
KA simulator			-173.15dB	

Patch Model: multiple physical areas, single elevation

Coherent & incoherent formula

$$\left\langle \left| \overline{E}_{s} \right|^{2} \right\rangle = \left| \left\langle \overline{E}_{s} \right\rangle \right|^{2} + \sum_{n=1}^{N} \left\langle \left| \overline{E}_{n}^{s} - \left\langle \overline{E}_{n}^{s} \right\rangle \right|^{2} \right\rangle$$

Coherent contribution

dominates

Мо	Pr/Pt dB	
KA simulator	Coherent component	-173.15
	Incoherent component	-200.39
	Total	-173.15
Patch/NMM3D	Coherent component	-172.45
	Incoherent component	-202.63
	Total	-172.45

Patch Model: multiple physical areas, multiple elevations (10000 elevations)

Correlation formula

$$\left\langle \left| \overline{E}_{s} \right|^{2} \right\rangle = \sum_{n=1}^{N} \left\langle \left| \overline{E}_{n}^{s} \right|^{2} \right\rangle + \sum_{n=1}^{N} \sum_{m=n+1}^{N} 2 \operatorname{Re}\left(\left\langle \overline{E}_{n}^{s} \right\rangle \left\langle \overline{E}_{m}^{s^{*}} \right\rangle \right)$$

Coherent component reduced by elevations

Self-term	Power each area	Correlation	Value	$P_r/P_t \; dB$
Bare soil	6.215×10^{-15}	Bare soil & Grass	5.615×10^{-15}	-
Forest2	1.298×10^{-15}	Bare soil & Forest2	-2.409×10^{-15}	-
Grass	7.141×10^{-16}	Grass & Forest2	-9.060×10^{-16}	-
Total	8.298×10^{-15}	Total	2.3×10^{-15}	-180.34dB
	KA simulator			-181.28dB

Patch Model: multiple physical areas, multiple elevations (10000 elevations)

Coherence reduced by elevations

Coherent & incoherent formula

$$\left\langle \left| \overline{E}_{s} \right|^{2} \right\rangle = \left| \left\langle \overline{E}_{s} \right\rangle \right|^{2} + \sum_{n=1}^{N} \left\langle \left| \overline{E}_{n}^{s} - \left\langle \overline{E}_{n}^{s} \right\rangle \right|^{2} \right\rangle$$

Model	
KA (single elevation)	
Coherent component	-181.33
Incoherent component	-200.55
Total	-181.28
Coherent component	-180.36
Incoherent component	-202.68
Total	-180.34
	del elevation) Coherent component Incoherent component Total Coherent component Incoherent component Total

Land Remote Sensing: Differences

	Radar Backscattering (SMAP)	GNSS-R (CYGNSS)
Radar configuration	Monostatic	Bistatic, Specular
Field components	Incoherent Fields	Coherent Field and Incoherent Field
Land surface profile	Single elevation	Multiple Elevations (Topography, DEM) influence Coherent Fields
Validation	Incoherent Fields	Coherent Fields, Specular Incoherent fields

Summary: 2 recent models by our Group

	KA simulator	Patch model
Patch size	2cm by 2cm	30m by 30m
Computation requirements	40 hours (20 cores)	0.6 seconds (1 core)
Accuracy	Kirchhoff approx.	NMM3D LUT more accurate
Surface type	Gaussian correlation functions	Gaussian and exponential
Formulation	Kirchhoff integral	Correlation formula and coh&incoh formula are consistent (different physical interpretations)
Land surface	Multiple elevations	Multiple elevations
Components	Both coherent and incoherent	Both coherent and incoherent

