

Improved Ocean Altimetry Methods with CYGNSS Observations in Indonesia

IEEE GNSS+R 2019 – Benevento, Italy, 20-22 May, 2019

Jake Mashburn, Penina Axelrad University of Colorado Boulder Andrew O'Brien, Eric Loria The Ohio State University Cinzia Zuffada, Bruce Haines, George Hajj NASA Jet Propulsion Laboratory

- Altimetry with GNSS-R
 - Background and description of measurement
- 1. Model Based Re-tracking Methods
 - Utilizing Voronovich and Zavorotny 2018
- 2. Improved Ionospheric Modeling and Evaluation
 - Data driven GIM estimates
- 3. Improved Orbit Determination
 - Kalman filtering the CYGNSS OD solutions
- SSH Retrievals in Indonesia
- Conclusions and Next Steps

- Altimetry with GNSS-R
 - Background and description of measurement
- 1. Model Based Re-tracking Methods
 - Utilizing Voronovich and Zavorotny 2018
- 2. Improved Ionospheric Modeling and Evaluation
 - Data driven GIM estimates
- 3. Improved Orbit Determination
 - Kalman filtering the CYGNSS OD solutions
- SSH Retrievals in Indonesia
- Conclusions and Next Steps

GNSS-R - Description of Altimetry Measurement

• For altimetry, we track the specular reflection path delay with respect to the direct signal and relate to RX height above a reference surface

Delay anomaly Δδ = ($\delta_{measured}$ - $\delta_{modeled}$)

- Received power contains contributions from the specular path together with those from an area of the ocean around it, the glistening zone
- Received power is measured as a function of delay and Doppler and is output as delay Doppler map DDM
- The altimetry measurement is dependent on the accurate determination of the specular path delay from the DDM

CCAR

GNSS-R – DDMs from CYGNSS

- Illustrate the different characteristics of observations from the coherent and incoherent cases.
- Coherent specular reflection dominates when surface conditions are smooth
 - Waveform looks similar to direct signal
- Typically, ocean surface winds are high enough that diffuse scattering over a large area resulting in an incoherent return
- For altimetry we need to re-track these observations to determine the signal path delay but the tracking point is different in each of these DDMs

20-22 May, 2019

Indonesia Case Study

- We select the region around Indonesia to perform a case study
- A relatively large percentage >2% of observations exhibit coherent characteristics in this area
- This area provides a good testing ground to develop our methods and is also oceanographically interesting due to the seasonal SSH signals

- Altimetry with GNSS-R
 - Background and description of measurement
- 1. Model Based Re-tracking Methods
 - Utilizing Voronovich and Zavorotny 2018
- 2. Improved Ionospheric Modeling and Evaluation
 - Data driven GIM estimates
- 3. Improved Orbit Determination
 - Kalman filtering the CYGNSS OD solutions
- SSH Retrievals in Indonesia
- Conclusions and Next Steps

Altimetry – Delay Re-Tracking Algorithms

Point Tracking

 P70 – Track 70% of peak power on waveform leading edge (Leads to systematic tracking errors)

Model Based Tracking

- VZ18WAVE Fit measurements to simulated delay waveforms from 0Hz Doppler bin Voronovich and Zavorotny (2018)
- VZ18DDM Fit measurements to simulated DDMs Voronovich and Zavorotny (2018)

VZ18 Model Tracking

The recent Voronovich and Zavorotny (2018) GNSS-R model now considers **diffuse AND coherent scattering** and is used to simulate CYGNSS ocean observations

2 methods are tested...

- VZ18WAVE LS fit of modeled waveforms to observed waveforms from 0Hz Doppler bin
- VZ18DDM LS fit of modeled DDMs to observed DDMs. Fits the Doppler asymmetry in the observations
- 1-sec and 10-sec integrated observations are tracked with the VZ18 algorithms

VZ18 Model Tracking

The recent Voronovich and Zavorotny (2018) GNSS-R model now considers **diffuse AND coherent scattering** and is used to simulate CYGNSS ocean observations

2x methods are tested

- VZ18WAVE LS fit of modeled waveforms to observed waveforms from 0Hz Doppler bin
- VZ18DDM LS fit of modeled DDMs to observed DDMs. Fits the Doppler asymmetry in the observations
- 1-sec and 10-sec integrated observations are tracked with the VZ18 algorithms

VZ18 Model Tracking

We account for...

- Measured CYGNSS antenna pattern
 - 1 pattern for all 8 CYGNSS
- Continuous satellite geometries to capture Doppler asymmetry
 - 360deg azimuth wrt. velocity direction
- Bandlimited sampling effects on the correlation function

11

Retracking Coherent Observations

- VZ18WAVE tends to overcompensate for measurements with width 0.6-0.8 chips
 - Possible Doppler mis-alignment between observation and model
- VZ18DDM shows less biased behavior and comparable precision to P70

P70	VZ18DDM	1
mean = -10m	mean = -4.4m	
σ = 9.9m	σ = 9.5m	

- Altimetry with GNSS-R
 - Background and description of measurement
- 1. Model Based Re-tracking Methods
 - Utilizing Voronovich and Zavorotny 2018
- 2. Improved Ionospheric Modeling and Evaluation
 - Data driven GIM estimates
- 3. Improved Orbit Determination
 - Kalman filtering the CYGNSS OD solutions
- SSH Retrievals in Indonesia
- Conclusions and Next Steps

Improved Ionosphere Modeling

- IGS Global Ionosphere Maps (GIMs) used to estimate vertical TEC columns
 - Assimilated GNSS observations of the ionosphere from IGS network
- Map direct path effect to slant angle with Montenbruck model for LEO spacecraft

 $M(\gamma) = \frac{\alpha}{\sin(\gamma)}, \ \alpha = \frac{e - exp(1 - exp(-z_{IP}))}{e - exp(1 - exp(h_0/H))}$

 Map reflection path effects to slant angles with Komjathy mapping

$$M(\gamma) = \frac{1}{\sqrt{1 - \left(\cos(\gamma)\frac{R_E}{R_E + h}\right)^2}}$$

$$\delta_{\text{iono}} = (\delta_1 + \delta_2) - \delta_3$$

Residual Ionospheric Errors

- Monthly average of estimated ionosphere effect is >10m over most of Indonesia region
- Nightly average is <2m

 Average day-time delay anomaly is biased -5m wrt average night-time delay anomaly

- Altimetry with GNSS-R
 - Background and description of measurement
- 1. Model Based Re-tracking Methods
 - Utilizing Voronovich and Zavorotny 2018
- 2. Improved Ionospheric Modeling and Evaluation
 - Data driven GIM estimates
- 3. Improved Orbit Determination
 - Kalman filtering the CYGNSS OD solutions
- SSH Retrievals in Indonesia
- Conclusions and Next Steps

Improved Orbit Determination

- An Unscented Kalman Filter is used to smooth the CYGNSS OD solutions
 - Original solutions are 1Hz real-time GPS L1C/A navigation solutions
- UKF smoothed orbit reduces significant random error in the orbit-radial direction
 - Errors in the orbit-radial component will map directly into SSH errors

- Altimetry with GNSS-R
 - Background and description of measurement
- 1. Model Based Re-tracking Methods
 - Utilizing Voronovich and Zavorotny 2018
- 2. Improved Ionospheric Modeling and Evaluation
 - Data driven GIM estimates
- 3. Improved Orbit Determination
 - Kalman filtering the CYGNSS OD solutions
- SSH Retrievals in Indonesia
- Conclusions and Next Steps

SSH Retrieval in Indonesia

Tracking Method	Single Sample, σ_H [m]	Gaussian Smoothed, σ_H [m]
P70 (1 sec)	6.7	1.9
VZ18WAVE (1 sec)	10.9	3.2
VZ18DDM (1 sec)	5.8	1.9
P70 (10 sec)	3.6	1.3
VZ18DDM (10 sec)	3.8	1.3

P70 – 1s obs

Altimetry Results – CYGNSS

Error Budget

- Models and considerations
 - UKF filtered orbits
 - DTU10 MSS
 - GIM lonosphere estimates
 - CYG predicted delay correction
 - QC to remove outliers

	Uncorrected	
Name	Magnitude	Residual Error
CYG orbit error	3 m position	$0.03 \text{ m} (1\sigma \text{ Gipsy})$
		$0.70~{ m m}~(1\sigma~{ m UKF})$
TX orbit error	1 m position	0.03 m position (1σ)
DTU10 MSS	$100 \mathrm{~m}$ height	0.1 m height (1σ)
Ionosphere delay	$<15~{\rm m}$ delay (day)	< 3.5 m delay (RMS)
	$< 7 \mathrm{m}$ delay (night)	$< 2 \mathrm{m}$ delay (RMS)
Troposphere delay	$6 \mathrm{m}$ delay	0.05 m delay (1σ)
Antenna baseline	$1 \mathrm{m}$ delay	0.001 m delay (1σ)
add_range_to_sp	\pm 15 m delay	4.6 m delay (1σ)
truncation		
Open loop delay-	\leq 1 m delay	\leq 1 m delay
Doppler smearing		
Tracking error	P70 (1s obs)	10 m
(at mean $SNR = 15 dB$)	VZ18WAVE (1s obs)	$5.5 \mathrm{~m}$
	VZ18DDM $(1s \text{ obs})$	2 m
	RSS_{P70}	= 11.6 m delay
	$RSS_{VZ18WAVE}$	$= 7.9 \mathrm{m}$ delay
	$RSS_{VZ18DDM}$	$= 5.9 \mathrm{m}$ delay

- Altimetry with GNSS-R
 - Background and description of measurement
- 1. Model Based Re-tracking Methods
 - Utilizing Voronovich and Zavorotny 2018
- 2. Improved Ionospheric Modeling and Evaluation
 - Data driven GIM estimates
- 3. Improved Orbit Determination
 - Kalman filtering the CYGNSS OD solutions
- SSH Retrievals in Indonesia
- Conclusions and Next Steps

Conclusions and Next Steps

Continue to improve ionosphere modeling

- Residual ionosphere bias is still several meters between average day and night observations
- Local GNSS receivers across Indonesia can be utilized to produce regional, time-varying ionosphere density estimates
- Improved understanding of local ionospheric activity will help produce better corrections

Model-based retracking

- VZ18WAVE and VZ18DDM retracking show improvement over pointtracking techniques
- Transition zone observations are still difficult to capture well
- More detailed along-track analysis and comparison between strongly coherent and incoherent observations will help improve our modeling and retracking algorithms